Traffic Signal Synchronization in the Saturated High-Density Grid Road Network
نویسندگان
چکیده
Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.
منابع مشابه
Optimal Signal Control in Urban Road Networks with High Priority Congested Centers
Keeping the density of traffic flow and air pollution in an acceptable level and developing a good capacity for transit in the high priority areas of the city, is really a big deal in large and crowded cities. To address this problem, a new method of intersection signal optimization is presented in this paper. Based on network fundamental diagrams, an Internal–External Traffic Metering Strategy...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملRelationship between Pedestrians’ Speed, Density and Flow Rate of Crossings through Urban Intersections (Case Study: Rasht Metropolis) (RESEARCH NOTE)
Travels within the city are done in different ways, by vehicle or on foot. Thus, inevitably, a part of the travel is always done on foot. Since intersections as traffic nodes are determinant factor in transportation network capacity, any disruption in them leads to severe reduction in network capacity. Unfortunately, pedestrian behavior has received little attention in Iran. While this is a ver...
متن کاملMethod of Video-Measurements of Traffic Flow Characteristics at a Road Junction
In the theory of traffic flows the main characteristics are: intensity, speed, and density. They make it possible to use hydrodynamic models. In connection with the development of modern highways and road networks, traffic flows behavior is becoming more and more complex and diverse. In particular, the B.Kerner studies have shown that the laminar solution of hydrodynamic models is poorly corre...
متن کاملSynchronization of Microgrid Considering the Dynamics of V2Gs Using an Optimized Fractional Order Controller based Scheme
In this work, a new control scheme for synchronization of AC microgrids with upstream power grid is presented. The effects of V2Gs (vehicle to grid) dynamics on synchronization process is studied. This new control approach is based on the optimal fractional calculus and has been developed for synchronization of the microgrid. The V2Gs effect on the dynamics of the microgrid is analyzed through ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015